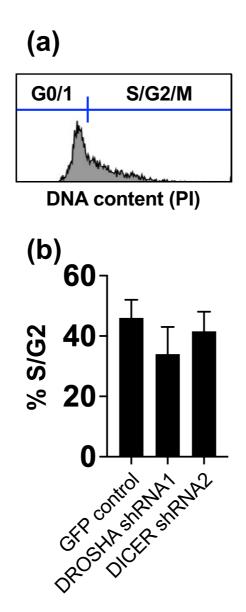
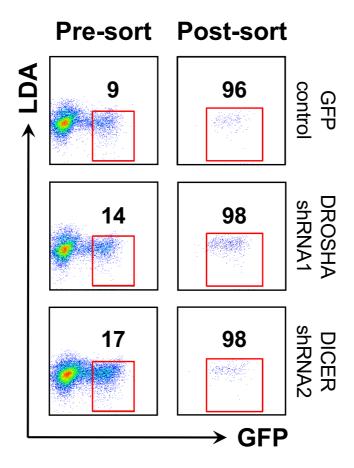
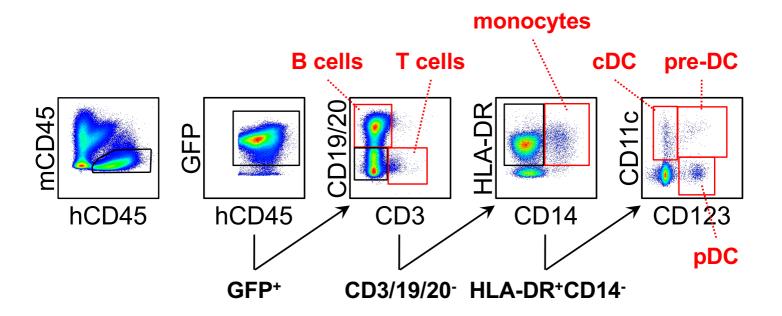

Supplementary table 1: Antibodies use the study for flow cytometry


Company	Antibody	Target species	Clone	Fluorochrome
BioLegend	hCD45	human	HI30	APC-Cy7
BioLegend	CD19	human	HIB19	PB
BioLegend	CD20	human	2H7	PB
BD	mCD45	mouse	30-F11	V500
BioLegend	CD3	human	OKT3	BV711
BioLegend	CD14	human	HCD14	APC
BioLegend	HLA-DR	human	L243	PerCP-Cy5.5
BD	CD11c	human	B-LY6	PE-CF594
BD	CD123	human	7G3	BUV395
BioLegend	CD1c	human	L161	AF700
BioLegend	CD141	human	M80	PE-Cy7
BD	CD11b	human	ICRF44	BV650

Supplementary table 2: Oligonucleotides used in this study


Name	Sequence	Description
DROSHA-f	TTGGAACGAGTAGGCTTCGT	Human DROSHA qPCR forward primer
DROSHA-r	CAGGTGCTGTCCTCATCAGA	Human DROSHA qPCR reverse primer
DICER-f	GCTGTGTACGATTGGCTGAA	Human DICER qPCR forward primer
DICER-r	GGTAGCACTGCCTTCGTTTC	Human DICER qPCR reverse primer
MYL9-f	CTTCACCATGTTCCTCACCA	Human MYL9 qPCR forward primer
MYL9-r	CCGGTACATCTCGTCCACTT	Human MYL9 qPCR reverse primer at position 481
12_00017631-f	CCAGACCCCTCCACTGTAAA	Human TCONS_12_00017631 qPCR forward primer
12_00017631-r	AAACTGGAATGGCCTGTCAC	Human TCONS_12_00017631 qPCR reverse primer
GAPDH-f	GTGGACCTGACCTGCCGTCT	Human GAPDH qPCR forward primer
GADPH-r	GGAGGAGTGGGTGTCGCTGT	Human GAPDH qPCR reverse primer
5' adaptor	ACTCTTTCCCTACACGACGC	Forward primer against RNA oligo adaptor
MYL9-213	TGCAGGTCCTCCTTGTCAAT	MYL9 reverse primer at position 213
MYL9-257	GGTATTCGTCTGTGGGGTTC	MYL9 reverse primer at position 257
MYL9-372	GCAAAGGCGTTGCGAATCAC	MYL9 reverse primer at position 372


Supplementary Figure 1: Detection of DROSHA and DICER protein levels following shRNA-mediated knockdown. Jurkat cells were transduced with lentiviral shRNAs against DROSHA, DICER or an empty vector. The transduced cells (GFP+) were sorted and analysed for (a) DROSHA or (b) DICER protein by Western blotting. Separate gels were run for the β -ACTIN loading controls due to differences in detection sensitivities. Lysates from 5×10^6 cells were loaded for the DROSHA and DICER blots, while lysates from 2×10^5 cells were loaded for the β -ACTIN blots. A representative of two experiments is shown.

Supplementary Figure 2: Cell cycle analysis of CD34⁺ HSCs following DROSHA and DICER knockdown. (a) Cord blood CD34⁺ cells were transduced with lentiviral shRNAs against DROSHA or DICER, or an empty viral (GFP only) control. After 3 days, the GFP⁺ transduced cells were sorted to purity and expanded for a further 5 days, in culture. The cells were then analysed for cell cycle status by measuring DNA content (propidium iodide staining). (b) Shown is the mean \pm S.EM of two experiments measuring the percentage of cells in S/G2/M as an indicator of proliferation.

Supplementary Figure 3: Sorting of transduced CD34⁺ HSCs for engraftment into NSG-SGM3 mice. Cord blood CD34⁺ cells were transduced with lentiviral shRNAs against DROSHA or DICER, or an empty viral (GFP only) control. After 3 days, the GFP⁺ transduced cells were sorted to purity for engraftment into NSG-SGM3 mice. Typical percentages of GFP⁺ cells pre- and post-sort are indicated.

Supplementary Figure 4: Gating strategy for analysing humanized mice Shown is a representative flow cytometric analysis of the spleen for cells derived from the transduced cord blood CD34⁺ cells. Expression of hCD45 and GFP identifies cells derived from the engrafted transduced human CD34⁺ cells. These are then subdivided into CD19⁺CD20⁺ B cells, CD3⁺ T cells, HLA-DR⁺CD14⁺ monocytes, HLA-DR⁺CD11c⁺CD123⁻ conventional dendritic cells (cDC), HLA-DR⁺CD11c⁻CD123⁺ plasmacytoid dendritic cells (pDC) and HLA-DR⁺CD11c⁺CD123⁺ pre-DC.